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Summary

Coarse grid �nite-di�erence schemes do not allow for
general source and receiver positions. This problem
is here solv ed using optimized operators with general
phase-shift properties. These operators are band-limited
represen tations of the Dirac delta function and the
deriv ativ eof the Dirac delta function. The scheme is
tested for a single source and a small source array. The
resulting �nite-di�erence solution is for both cases close
to the analytical solution.

In troduction

Coarse-grid methods like pseudo-spectral methods (Forn-
berg, 1975); (Koslo� and Ba ysal, 1982) or high order
�nite-di�erence methods (Holberg, 1987) are ideally
suited for implementing fast and memory e�cient 3-D
elastic modeling schemes (Mittet et al., 1988); (Reshef et
al., 1988). These methods require few nodes per shortest
w avelength in order to describe a propagating w ave
�eld, thus both storage requirements and the number
of numerical calculations are reduced as compared to
low order �nite-di�erence schemes. Ho w ever,there
are problems implementing the source function when
the typical distance betw een adjacen tgrid poin ts is of
order 10 m. Ev en a single air gun can not be correctly
implemented, unless the true source depth coincide with
a grid node. Assuming a grid spacing of 10 m, then
the source m ustbe placed at the depth of 10 m since
there are no nodes betw een the free surface and this
depth. If the true depth of the source is 4 m, then the
ghost con tribution cannot be properly described using
a coarse grid. The problem is even larger if a marine
source array is to be simulated. A conventional marine
source array consists of a number (from 5 to 70) of
individual air guns, typically separated by 1 - 4 m. This
implies that e�ectiv e poin t-source signatures estimated
from measurements cannot be implemented directly in
a coarse-grid �nite-di�erence scheme. An appro ximate
solution to this problem is to generate e�ectiv e sources
at chosen node positions (Landr� et al., 1993) whic h
m ustbe calculated by an inversion procedure prior to
the �nite-di�erence modeling.

Here we presen t a method which obviates this inversion
based preprocessing of the source con tribution and in-
clude the source contribution directly at the true depth,
independently of the grid spacing. The new scheme also
allows for arbitrary receiver positions. The method is
based on generating optimized band-limited approxima-
tions to the Dirac delta function and its �rst derivativ e,
where these band-limited functions are designed with a
general phase shift. The resulting operators represent a

generalization of the operators given b y Holberg (1987).

The band-limited Dirac delta function is iden tical with
the con volution phase-shift operator.This implies that if
a regularly sampled function is known and within required
w avenumber limits, then the response at any location can
be calculated using the optimized phase-shift operator.
Simulating a real experiment, group summation can be
performed during modeling and in addition a streamer
with variable depth and feathering may be simulated.

The acoustic and elastic Kirchho� integrals require that
proper appro ximations for the monopole and dipole
source terms are known. Th us, good approximations to
these operators can increase the accuracy of reverse time
migration schemes when the recorded �eld is not sam-
pled with a constan tinterval or the receiver depths do
not coincide with the grid.

Theory

For simplicity we discuss the implementation of the op-
timized phase-shift source and receiver operators using
the 3D acoustic w aveequation, but the operators can
be implemented directly in a 3D staggered-grid elastic
�nite-di�erence scheme. In the following, the Einstein
summation con vention is used. The acoustic w ave
equation for forw ardmodeling with a source signature
S(t) is,

@2tP (x; tjxs)�M(x)@jf�
�1(x)@jP (x; tjxs)g =

�(x� xs)S(t); (1)

where P (x; tjxs) is the pressure due to a source at xs,
�(x) is the densit y andM(x) is the bulk modulus.

The monopole operator needed in the source term of the
w aveequation is an appro ximationto the Dirac delta
function,

�(x� xs): (2)

The Dirac delta function is identical with the convolution
phase-shift operator s�xx ,

�(x+ �x) =

Z
1

�1

dx0f�(x0 � �x)g�(x+ x0)

= s�xx � �(x): (3)

A proper discrete version of the con volution phase-shift
operator makes it possible to sim ulatesources and re-
ceivers at arbitrary grid positions.

Assume that the operator can be band limited and is to
be used on a regularly sampled function with sampling
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General source and receiver positions

interval �x. Let x = i�x with i integer. Let �x = ��x
with � a real number suc h that �0:5 � � � 0:5. The
discrete v ersion ofs�xx is denoted S�

x ,

�(j�x+ ��x) = S�
x�(j�x)

=

LX
l=�L

[�x�(l�x� ��x)]�(j�x+ l�x)

=

LX
l=�L

��l �j+l: (4)

The Fourier response of S�
x is,

S�(k) =

LX
l=�L

��l e
ik(l��)�x: (5)

Let the response of S�(k) be represented b y,

S�(k) = 1 + "�(k) (6)

where "�(k) is the relativ e error in frequency response of
the operator S�

x . The derivativ e of the frequency response
of S�(k) is,

@kS
�(k) = @k"

�(k): (7)

The group velocity criterion (Holberg, 1987) can be used
for the phase-shift operator. If it is required that S�(k)
is as close as possible to 1 and close to equiripple, that is,
the deriv ative of S�(k) with respect to k is as close to 0
as possible, then,

min(S�(k)� 1 + k@kS
�(k)) =

min("�(k) + k@k"
�(k)) =

min("�gr(k)): (8)

The error functional E�L used her is,

E�L = [

Z Km

k=0

dk(S�(k)� 1 + k@kS
�(k))2

+ w(

LX
l=�L

��l � 1)]2 (9)

where

S�(k)� 1 + k@kS
�(k) =

LX
l=�L

f��l [1 + ik(l� �)�x]eik(l��)�xg � 1: (10)

The term proportional to w in equation (9) ensures that
the sum of all phase-shift operator coe�cients is equal to
1. This constraint must be implemented to giv e opera-
tors with a proper amplitude preserving behavior for the

dc components. The dipole (derivativ e) operator is gen-
erated b y the same procedure asdescribed here for the
monopole (phase-shift) operator.

With these operators, a staggered-grid high-order model-
ing sc heme can be implemented. Let x = i�x, y = j�y,
z = k�z and t = n�t,

Ai+ 1

2
;j;k = ��1

i+ 1

2
;j;k

@+x P
n
i;j;k;

Bi;j+ 1

2
;k = ��1

i;j+ 1

2
;k
@+y P

n
i;j;k;

Ci;j;k+ 1

2

= ��1
i;j;k+ 1

2

@+z P
n
i;j;k; (11)

and,

Ui;j;k = Mi;j;k@
�

x Ai+ 1

2
;j;k;

Vi;j;k = Mi;j;k@
�

y Bi;j+ 1

2
;k;

Wi;j;k = Mi;j;k@
�

z Ci;j;k+ 1

2

; (12)

where @+i and @�i are high-order forward and backw ard
deriv ativ e operators in thei-direction respectively (Hol-
berg, 1987). A second order time integration of the
scheme gives,

Pn+1
i;j;k = 2Pn

i;j;k + Pn�1
i;j;k + Ui;j;k + Vi;j;k +Wi;j;k

+ DI;J;KS
n; (13)

where D is the spatial part of the source term. This term
is a band-limited appro ximationto the 3D Dirac delta
function,

�(x� xs) = �(x� xs)�(y � ys)�(z � zs); (14)

and can be constructed from the coe�cients ��l . The
capital index I(i; is; �s) depends on i; is; �s so that,

x = i�x;

xs = (is + �)�x; (15)

and lik ewise for the capital indicesJ and K.

This implies that Sn, the con tribution from the temporal
source term at time n�t, in principle is distributed over
several nodes in all spatial directions and such that this
three dimensional band-limited delta-function appro xi-
mation is centered at the true source position xs and not
at the nearest node. The coe�cients of DI;J;K are scaled
with the steplengths such that if xs coincides with a node
position then,

DI;J;K =
1

�x

1

�y

1

�z
: (16)

at this node and zero for the neighboring nodes.

For recording purposes a direct 3D generalization of equa-
tion (4) can be used,

Pn(xr; yr; zr) =

S�x
x S

�y
y S�z

z Pi;j;k = (17)

LxX
lx=�Lx

LyX
ly=�Ly

LzX
lz=�Lz

��xlx �
�y
ly
��zlz Pi+lx;j+ly ;k+lz :
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General source and receiver positions

Fig. 1: Pressure at depth 100m. Zero o�set. Solid line : analytical
solution for source at 4 m. Dashed-dotted line : �nite-di�erence
solution for source at 10 m.

The operator half lengths Lxi are usually of order 8-10 to
ensure high numerical precision for all phase shifts. The
computer time needed to perform this triple sum is nor-
mally small compared to the the computer time needed
to step the w ave�eldforw ardin time since the number
of receivers usually is m uch lessthan the total number
of grid nodes and recording is not necessary at each time
step in order to sample the �eld properly.

The operators for both sources and receivers tak e the form
of 2D tables. Eac h source or receiver position has nearest
node coordinates for each spatial dimension and � coor-
dinates giving the distance from the nearest node to the
true source or receiver coordinate. The operator table
con tain a set of operators with length 2L + 1 for each
�-value. The � steplengths can be made arbitrarily �ne
since the table has to be built only once.

Numerical example

The proposed band-limited delta-function operators are
put to tw o tests. The �rst test is for a single source
located at a true depth of 4 m. The recording is per-
formed at a depth of 100 m. The �nite-di�erence node
spacing is 10 m. The P-wave velocity is 1480 m/s and
the density is 1.0 g=cm3. In Figure 1 the analytical
solution is plotted with a solid line. The dashed-dotted
line is the result of a �nite-di�erence sim ulationwhere
the source is assumed to be located at the nearest node.
The optimized spatial delta functions is not used in this
sim ulation. Th us,in the �nite-di�erence simulation the
source depth becomes 10 m. As can be seen, the tw o
signals deviate. P art of this deviation is due to the
travel-time di�erence of the direct signal and some of
the di�erence is due to a di�erent ghost e�ect for the
�nite-di�erence solution compared to the true solution.
In Figure 2 the analytical solution is plotted with a

solid line. The dashed-dotted line is the result of a

Fig. 2: Pressure at depth 100m. Zero o�set. Solid line : analytical
solution for source at 4 m. Dashed-dotted line : �nite-di�erence
solution for source at 4 m.

Fig. 3: Notional source signatures for the 10 air guns in the source
array.

�nite-di�erence sim ulationwhere the source is placed
at the true depth using the optimized spatial delta
functions. The �t is clearly improved compared to the
simple source implementation approach discussed for
Figure 1. We �nd this improved �t for all o�sets.

The second test is a comparison of the �nite-di�erence so-
lution and the analytical solution for a small source array
where the e�ective source signatures (notional source sig-
natures) are known. The 10 air-gun signatures are shown
in Figure 3. The frequency content of the original signa-
tures w as reduced to 50 Hz, without changing the wave-
forms. In Figure 4 the analytical solution is plotted with
a solid line. The dashed-dotted line is the result of
a �nite-di�erence simulation where the optimized spatial
delta functions are not used. This implies that all sources
are located at the nearest node in the �nite-di�erence sim-
ulation. Deviations can be seen in the arrival time and
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General source and receiver positions

Fig. 4: Pressure at depth 100m. Zero o�set. Solid line : analytical
solution for source arra y. Dashed-dotted line : �nite-di�erence
solution for individual sources at nearest node in �nite-di�erence
grid.

amplitude of the primary part of the signal and also for
the part related to the �rst bubble oscillation. The er-
rors are comparable to those in Figure 1, but a di�erent
time scale is used in Figure 4 to include the �rst bubble
oscillation

In Figure 5 the analytical solution (solid line) together
with the result of a �nite-di�erence simulation where the
sources are placed at their true x-, y- and z-coordinates
using the optimized spatial delta functions (dashed-
dotted line) are shown. The �t is clearly improved com-
pared to the strategy of using the nearest nodes as the
source positions.

Conclusions

A method for positioning sources and receivers at arbi-
trary locations for coarse-grid �nite-di�erence schemes
ha ve been presented. The method is based on designing
optimized band-limited appro ximations for both the
Dirac delta function and the spatial deriv ativ eof the
Dirac delta function. These operators can have a general
phase shift whic hallows the operator to be cen tered
an ywhere betw een grid nodes. The phase-shift operator
used for recording at an arbitrary position is identical to
the spatially band-limited delta function (monopole) used
in the source term. The phase-shift derivativ e operator
is iden tical to the spatially band-limited deriv ativ eof
the delta function (e.g., dipole term in the Kirc hho�
integral).

The optimized phase-shift operators were tested both for
a single source and a small source array. Good agreement
betw een the�nite-di�erence solution and the analytical
solution where found for all o�sets in both cases.

Fig. 5: Pressure at depth 100m. Zero o�set. Solid line : analytical
solution for source arra y. Dashed-dotted line : �nite-di�erence
solution for individual sources at true positions.
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